Document Type : Regular Article


1 Research Scholar, Government Engineering College Haveri-581101, Karnataka, India

2 Professor and Head of the department of Civil Engineering, Government Engineering College Haveri-581101, Karnataka, India


Designer of military and high-security facilities, planner, architects and engineers throughout the world are much concerned against a blast load on structures. Blast load is a human hazard occurring in the world, due to terrorist, chemical explosives, mining area, an accident, and so on. Blast load is an unpredictable load occurring. The blast load occurs in a few seconds. The blast load does not only lead to structural but also take the life of occupations. In this study five – storey unsymmetrical structures exposed to blast load are considered. The three different control devices are considered such as cladding material, base isolation with lead rubber bearing (LRB) and MR Damper. Cladding material will absorb energy after the severe pressure release from the blast and then transfer less amount of energy to the structures. Base isolations with lead rubber bearing not only absorb energy but also increase the stiffness of the structure. Among the different devices’ MR Damper plays a vital role reduce the considerable amount of responses.




Main Subjects

[1]       Xia Y, Wu C, Zhang F, Li Z-X, Bennett T. Numerical Analysis of Foam-Protected RC Members under Blast Loads. International Journal of Protective Structures 2014;5:367–90. doi:10.1260/2041-4196.5.4.367.
[2]       Beshara FBA. Modelling of blast loading on aboveground structures—II. Internal blast and ground shock. Computers & Structures 1994;51:597–606. doi:10.1016/0045-7949(94)90067-1.
[3]       Beshara FBA. Modelling of blast loading on aboveground structures—I. General phenomenology and external blast. Computers & Structures 1994;51:585–96. doi:10.1016/0045-7949(94)90066-3.
[4]       Remennikov A, Carolan D. Blast Effects and Vulnerability of Building Structures from Terrorist Attack. Australian Journal of Structural Engineering 2006;7:1–11. doi:10.1080/13287982.2006.11464959.
[5]       Chen C, Harte A-M, Fleck NA. The plastic collapse of sandwich beams with a metallic foam core. International Journal of Mechanical Sciences 2001;43:1483–506. doi:10.1016/S0020-7403(00)00069-2.
[6]       Gama BA, Bogetti TA, Fink BK, Yu C-J, Dennis Claar T, Eifert HH, et al. Aluminum foam integral armor: a new dimension in armor design. Composite Structures 2001;52:381–95. doi:10.1016/S0263-8223(01)00029-0.
[7]       Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminium foam panels. International Journal of Impact Engineering 2002;27:593–618. doi:10.1016/S0734-743X(01)00155-5.
[8]       McCormack TM, Miller R, Kesler O, Gibson LJ. Failure of sandwich beams with metallic foam cores. International Journal of Solids and Structures 2001;38:4901–20. doi:10.1016/S0020-7683(00)00327-9.
[9]       Sokolinsky VS, Shen H, Vaikhanski L, Nutt SR. Experimental and analytical study of nonlinear bending response of sandwich beams. Composite Structures 2003;60:219–29. doi:10.1016/S0263-8223(02)00293-3.
[10]     Ye ZQ, Ma GW. Effects of Foam Claddings for Structure Protection against Blast Loads. Journal of Engineering Mechanics 2007;133:41–7. doi:10.1061/(ASCE)0733-9399(2007)133:1(41).
[11]     Ashby MF. Metal foams : a design guide. Butterworth-Heinemann; 2000.
[12]     Cao L, Lu S, Laflamme S, Quiel S, Ricles J, Taylor D. Performance-based design procedure of a novel friction-based cladding connection for blast mitigation. International Journal of Impact Engineering 2018;117:48–62. doi:10.1016/J.IJIMPENG.2018.03.003.
[13]     Ghodke S, Jangid RS. Equivalent linear elastic-viscous model of shape memory alloy for isolated structures. Advances in Engineering Software 2016;99:1–8. doi:10.1016/J.ADVENGSOFT.2016.04.005.
[14]     Uniform Building Code. International code Council; 2000.
[15]     International Conference of Building California. Whittier; 1997.
[16]     Jangid RS. Optimum lead–rubber isolation bearings for near-fault motions. Engineering Structures 2007;29:2503–13. doi:10.1016/J.ENGSTRUCT.2006.12.010.
[17]     Ryan KL, Chopra AK. Estimating Seismic Demands for Isolation Bearings with Building Overturning Effects. Journal of Structural Engineering 2006;132:1118–28. doi:10.1061/(ASCE)0733-9445(2006)132:7(1118).
[18]     Zhang R, Phillips BM. Performance and Protection of Base-Isolated Structures under Blast Loading. Journal of Engineering Mechanics 2016;142:04015063. doi:10.1061/(ASCE)EM.1943-7889.0000974.
[19]     Song W, Hayati S, Zhou S. Real-time model updating for magnetorheological damper identification: an experimental study. Smart Structures and Systems 2017;20:619. doi:10.12989/SSS.2017.20.5.619.
[20]     Khalid M, Yusof R, Joshani M, Selamat H, Joshani M. Nonlinear Identification of a Magneto-Rheological Damper Based on Dynamic Neural Networks. Computer-Aided Civil and Infrastructure Engineering 2014;29:221–33. doi:10.1111/mice.12005.
[21]     Ghasemi SH, Nowak AS. Reliability analysis of circular tunnel with consideration of the strength limit state. Geomechanics and Engineering 2018;15:879. doi:10.12989/GAE.2018.15.3.879.
[22]     Ghasemi SH, Nowak AS. Reliability index for non-normal distributions of limit state functions. Structural Engineering and Mechanics 2017;62:365–72. doi:10.12989/sem.2017.62.3.365.
[23]     Ghasemi S. Target reliability analysis for structures. 2015.
[24]     Ghasemi SH, Nowak AS. Mean maximum values of non-normal distributions for different time periods. International Journal of Reliability and Safety 2016;10:99. doi:10.1504/IJRS.2016.078381.
[25]     Fallah AS, Louca LA. Pressure–impulse diagrams for elastic-plastic-hardening and softening single-degree-of-freedom models subjected to blast loading. International Journal of Impact Engineering 2007;34:823–42. doi:10.1016/J.IJIMPENG.2006.01.007.
[26]     Tsai Y. Energy based load-impulse diagrams. Engineering Structures 2017;149:64–77. doi:10.1016/J.ENGSTRUCT.2016.10.042.
[27]     Dragos J, Wu C. Application of Normalized Pressure Impulse Diagrams for Vented and Unvented Confined Blasts. Journal of Engineering Mechanics 2014;140:593–603. doi:10.1061/(ASCE)EM.1943-7889.0000680.