Document Type: Regular Article

Author

Department of Mechanical Engineering, College of Engineering, Taif University, Taif, KSA

10.22115/rer.2019.86929

Abstract

Incorrect tire pressure reduces vehicle performance, braking effectiveness, system control, and a ride comfort. Tire pressure checking framework (TPCF) is a system framework applied for checking tire pressure. This study aim at summarizing early work for the tire pressure checking framework including early different methods. Direct and indirect tire pressure checking frameworks are discussed and a comparison between both methods is summarized. A development of tire pressure checking framework is presented. Risks of the low/high tire pressures are discussed. Operating the tire at lower and/or higher pressure than the specified one can cause several severe problems. Direct TPCF uses physical sensors, however, the indirect TPCF uses velocity and vibration sensors to monitor the tire pressure. Direct TPCF framework method is more accurate than the indirect one; however, the direct showed some problems related to battery life and framework costs. The indirect needs calibration/adjustment by the drivers, and cannot realize the simultaneous loss of pressure from more than one tire in time.

Keywords

Main Subjects

[1]       Elfasakhany A, Tao L, Espenas B, Larfeldt J, Bai X-S. Pulverised wood combustion in a vertical furnace: Experimental and computational analyses. Appl Energy 2013;112:454–64. doi:10.1016/j.apenergy.2013.04.051.

[2]       Elfasakhany A, Bai XS. Numerical and experimental studies of irregular-shape biomass particle motions in turbulent flows. Eng Sci Technol an Int J 2019;22:249–65. doi:10.1016/j.jestch.2018.10.005.

[3]       Elfasakhany A. Adjustable throat-area expansion valves used in automotive air conditioning systems: A mini review. Int J Automot Eng 2019;9:2868–75.

[4]       Elfasakhany A. Powder biomass fast pyrolysis as in combustion conditions: Numerical prediction and validation. Renew Energy Focus 2018;27:78–87. doi:10.1016/J.REF.2018.09.001.

[5]       Elfasakhany A. Engine performance evaluation and pollutant emissions analysis using ternary bio-ethanol–iso-butanol–gasoline blends in gasoline engines. J Clean Prod 2016;139:1057–67. doi:10.1016/J.JCLEPRO.2016.09.016.

[6]       Abdel-Aziz K, Abo El-Nasr A., Elfasakhany A, Saber D, Helal M. Influence of casting mould wall thickness on the properties and microstructure of A356 alloy reinforced with micro/nanoalumina particles. Arct Journal, Canada 2018;71:26–39.

[7]       Elfasakhany A, Rezola E., Quiñones K., Sánc R. Design and Development of a Competitive Low-cost Robot Arm with Four Degrees of Freedom. Mod Mech Eng 2011;1:47–55.

[8]       Elfasakhany A, Hernández J, García JC, Reyes M, Martell F. Design and Development of House-Mobile Security Framework. Engineering 2011;3:1213–1224.

[9]       Elfasakhany A. Improving Performance and Development of Two-Stage Reciprocating Compressors. Int J Adv Res Sci Eng Technol 2012;3:119–136.

[10]     Elfasakhany A, Alarcón JA, Montes DOS. Design and Development of an Automotive Vertical Doors Opening Framework (AVDOS). Int J Adv Res Sci Eng Technol 2012;3:176–186.

[11]     Thota P, Krauskopf B, Lowenberg M. Interaction of torsion and lateral bending in aircraft nose landing gear shimmy. Nonlinear Dyn 2009;57:455–67. doi:10.1007/s11071-008-9455-y.

[12]     Oduro SD, Alhassan T, Owusu-Ansah P, Andoh PY. A Mathematical Model for Predicting the Effects of Tyre Pressure on Fuel Consumption. Res J Appl Sci Eng Technol 2013;6:123–9. doi:10.19026/rjaset.6.4046.

[13]     Calwell C, Ton M, Gordon D, Reeder T, Olson M, Foster S. California state fuel efficient tire report. 2003.

[14]     Schuring DJ, Futamura S. Rolling Loss of Pneumatic Highway Tires in the Eighties. Rubber Chem Technol 1990;63:315–67. doi:10.5254/1.3538261.

[15]     Mustafić I, Berković M, Klisura F. Regulation and Tire Pressure Checking Framework. 14th Int Conf Trends Dev Mach Assoc Technol, Mediterranean Cruise: 2010.

[16]     Jansen JD, van den Steen L. Active damping of self-excited torsional vibrations in oil well drillstrings. J Sound Vib 1995;179:647–68. doi:10.1006/JSVI.1995.0042.

[17]     Leine RI. Bifurcations in Discontinuous Mechanical Frameworks of Filippov-Type. Eindhoven University of Technology, 2000.

[18]     Leine RI, van Campen DH, Keultjes WJG. Stick-slip Whirl Interaction in Drillstring Dynamics. J Vib Acoust 2002;124:209. doi:10.1115/1.1452745.

[19]     FEA Chapter III: Tire Pressure Survey and Test Results, National Highway Traffic Safety Administration; 2009.

[20]     Jazar R. Vehicle dynamics: theory and application. 2017.

[21]     Tandy Jr. DF, Pascarella R, Tandy K, Neal J. Effect of Aging on Tire Force and Moment Characteristics, 2010. doi:10.4271/2010-01-0772.

[22]     Guillou M, Bradley C. Fuel Consumption Testing to Verify the Effect of Tire Rolling Resistance on Fuel Economy, 2010. doi:10.4271/2010-01-0763.

[23]     Persson N, Gustafsson F, Drevö M. Indirect Tire Pressure Checking Using Sensor Fusion. Soc Automot Eng 2002;1. doi:10.4271/2002-01-1250.

[24]     Hillier VAW (Victor AW, Coombes P, Rogers D (David R. Hillier’s fundamentals of motor vehicle technology. Nelson Thornes; 2004.

[25]     Rouf I, Miller R, Mustafa H, Taylor T, Oh S, Xu W, et al. Security and privacy vulnerabilities of in-car wireless networks: a tire pressure monitoring system case study. Proc 19th USENIX Conf Secur 2010:21–21.

[26]     Velupilla S, Guvenc L. Tire pressure monitoring. IEEE Control Fram Mag 2007:27:22.25.

[27]     Brzeska M, Chakam G-A. RF modelling and characterization of a tyre pressure monitoring system. 2nd Eur Conf Antennas Propag (EuCAP 2007), Institution of Engineering and Technology; 2007, p. 755–755. doi:10.1049/ic.2007.0879.

[28]     Song H, Colburn J, Hsu H, Wiese R. Development of Reduced Order Model for Modeling Performance of Tire Pressure Monitoring System. IEEE Veh Technol Conf, IEEE; 2006, p. 1–5. doi:10.1109/VTCF.2006.608.

[29]     Takeyasu T. Tire pneumatic pressure detector. EP 700798, 1996.

[30]     Naito T. Tyre air pressure estimating apparatus. EP 925960, 1998.

[31]     F. Braun. Tire pressure monitoring system and method for the allocation of tire modules in a tire pressure monitoring system, 2006.

[32]     Highway D of TN, Administration TS. federal motor vehicle safety standards; tire pressure checking frameworks. 2004.

[33]     Woodrooffe J, LeBlanc PA, Lepiane KR. Effects of suspension variations on the dynamic wheel loads of a heavy articulated highway vehicle. Canroad Transp Res Corp 1986;11.

[34]     Mitchell C, Gyenes L. DYNAMIC PAVEMENTS LOADS MEASURES FOR A VARIETY OF TRUCK SUSPENSIONS. 2nd Int Conf heavy Veh Weight Dimens, Kelowna, British Columbia: 1989.

[35]     Hahn WD. Effects of commercial vehicle design on road stress - vehicle research results. Hannover: 1987.

[36]     Heath AN, Good MC. Heavy vehicle design parameters and dynamic pavement loading. vol. 15. Prentice Hall; 2001.