Document Type: Regular Article

Authors

Department of Mechanical Engineering, University of Lagos, Lagos, Nigeria

10.22115/rer.2019.85314

Abstract

Iron micro-particles when eject to the atmosphere from industries, factory and production enterprises pollute the atmosphere and generally affect the respiratory system. This paper presents a solution to such transient problem analytically by employing Variation of Parameter Method (VPM). For proper understanding of the problem chemistry and associated time of burning, the parameters involved are meticulously studied. The radiation property of the iron particle at high temperature as well as the impact of this temperature level on density are considered by incorporating radiation and linear micro particles density variation in the governing model. The obtained exact solution using VPM is verified with Runge-Kutta and also compared with the results of other works. Furthermore, error analysis is performed and discussed. The obtained result shows how the surrounding temperature and the heat realization term continue to influence combustible temperature history until an asymptotic behaviour is attained. It is envisaged that the present study will gain application in trying to annul some of the challenges the industries and firms have to overcome on combustion of solid combustibles like iron particles and also in the optimization of different particles burning time.

Keywords

Main Subjects

[1]       SUN J-H, DOBASHI R, HIRANO T. Combustion Behavior of Iron Particles Suspended in Air. Combust Sci Technol 2000;150:99–114. doi:10.1080/00102200008952119.

[2]       Haghiri A, Bidabadi M. Dynamic behavior of particles across flame propagation through micro-iron dust cloud with thermal radiation effect. Fuel 2011;90:2413–21. doi:10.1016/j.fuel.2011.03.032.

[3]       Hertzberg M, Zlochower IA, Cashdollar KL. Metal dust combustion: Explosion limits, pressures, and temperatures. Symp Combust 1992;24:1827–35. doi:10.1016/S0082-0784(06)80214-6.

[4]       Hatami M, Ganji DD, Jafaryar M, Farkhadnia F. Transient combustion analysis for iron micro-particles in a gaseous media by weighted residual methods (WRMs). Case Stud Therm Eng 2014;4:24–31. doi:10.1016/j.csite.2014.06.003.

[5]       He J-H. Homotopy perturbation technique. Comput Methods Appl Mech Eng 1999;178:257–62. doi:10.1016/S0045-7825(99)00018-3.

[6]       HE J-H. ADDENDUM: NEW INTERPRETATION OF HOMOTOPY PERTURBATION METHOD. Int J Mod Phys B 2006;20:2561–8. doi:10.1142/S0217979206034819.

[7]       He J-H. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int J Non Linear Mech 2000;35:37–43. doi:10.1016/S0020-7462(98)00085-7.

[8]       HE J-H. SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS. Int J Mod Phys B 2006;20:1141–99. doi:10.1142/S0217979206033796.

[9]       HE J-H. A NEW PERTURBATION TECHNIQUE WHICH IS ALSO VALID FOR LARGE PARAMETERS. J Sound Vib 2000;229:1257–63. doi:10.1006/jsvi.1999.2509.

[10]     Saedodin S, Shahbabaei M. Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM). Arab J Sci Eng 2013;38:2227–31. doi:10.1007/s13369-013-0581-6.

[11]     Darvishi MT, Gorla R, Khani F, Aziz A. Thermal performance of a porus radial fin with natural convection and radiative heat losses. Therm Sci 2015;19:669–78. doi:10.2298/TSCI120619149D.

[12]     Moradi A, Hayat T, Alsaedi A. Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Convers Manag 2014;77:70–7. doi:10.1016/j.enconman.2013.09.016.

[13]     Hoshyar H, Ganji DD, Abbasi M. Determination of Temperature Distribution for Porous Fin with Temperature-Dependent Heat Generation by Homotopy Analysis Method. J Appl Mech Eng 2015;04. doi:10.4172/2168-9873.1000153.

[14]     Sobamowo G, Adeleye O, Yinusa A. Analysis of convective-radiative porous fin With temperature-dependent internal heat Generation and magnetic field using Homotopy Perturbation method. J Comput Appl Mech 2017;12:127–45.

[15]     Yaseen M, Samraiz M, Naheed S. Exact solutions of Laplace equation by DJ method. Results Phys 2013;3:38–40. doi:10.1016/j.rinp.2013.01.001.

[16]     Sobamowo GM, Yinusa A. Transient Combustion Analysis for Iron Micro-Particles in a Gaseous Oxidizing Medium Using Adomian Decomposition Method. J Comput Eng Phys Model 2018;1:1–15. doi:10.22115/cepm.2018.122052.1012.

[17]     Sobamowo GM, Yinusa AA. Transient Combustion Analysis of Iron Micro-Particles in a Gaseous Oxidizing Medium Using a New Iterative Method. J Comput Eng Math 2018;5:3–16. doi:10.14529/jcem180301.

[18]     Yinusa A, Sobamowo G. Analysis of Dynamic Behaviour of a Tensioned Carbon Nanotube in Thermal and Pressurized Environments. Karbala Int J Mod Sci 2019;5. doi:10.33640/2405-609X.1015.

[19]     Nur Hikmah S, Siti Zubaidah S, Noor Sabrina AM, Siti Kholijah AM, Rohaida CM, Shalyda MS, et al. Preliminary study on the tea dust explosion: the effect of tea dust size. MATEC Web Conf 2019;255:02014. doi:10.1051/matecconf/201925502014.