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This article is aimed to introduce a new hybrid analytical-

digital technique for solving a wide range of problems in 

fluid mechanics. This method is according to the Different 

Transform Method (DTM) and Newton’s Iterative Method 

(NIM). In the Boundary Value Problems (BVP), the system 

and the boundary conditions converted to an algebraic 

equation set, and the Taylor series of the solution are 

subsequently calculated. By finding Jacobian matrix, the 

unknown parameters of the solution may be calculated using 

the multi-variable iterative Newton's method. The techniques 

are employed to determine a proximate solution for the 

problem. To expound upon the application of the new hybrid 

method illustratively, two nonlinear problems in fluid 

mechanics are considered: condensation film on the inclined 

rotating disk and the rotating MHD flow on a porous 

shrinking sheet. Using comparing the present results 

obtained with the numerical solutions and results presented 

in the literature, an excellent accuracy is observed. Quick 

convergence of the solution is another important merit of the 

proposed method. 
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1. Introduction 

Generally, the scientific problems and phenomena are necessarily nonlinear all over the world 

and may be modeled with the help of nonlinear differential equations. The majority of these 

problems do not have an exact analytical solution. So the scientists use the numerical solution 

and proximate procedures for solving such kind of equations. Obtaining a complete form of 

results through the numerical solution is expensive and time-consuming since the solution is 

given at the discrete points. Moreover, the stability and convergence must be taken into account 

in the numerical solution to avoid divergence or inappropriate results. 

Proximate methods such as Homotopy Perturbation Method (HPM), decomposition method 

(DM), Variational Iteration Method (VIM) and homotopy analysis method (HAM) are good 

substitutes for the numerical ones. Recently, some of the nonlinear engineering problems have 

been solved through some of the methods such as HAM [1–9], HPM [10–14], VIM [15–17] and 

DM [18–21]. In most studies, some modifications are introduced to eliminate the complexity and 

nonlinearity of the problems.  

Differential transform method (DTM) is another approximate method for solving differential 

equations. This method uses an iterative technique for finding the Taylor series solution for the 

problem. According to this method, it is not necessary to pay for high calculation costs to obtain 

the Taylor series coefficients.  Zhou introduced the DTM for solving the initial value problems in 

the electrical circuit analysis. Then, the DTM was applied on differential algebraic equations 

[22,23], partial differential equations [24–29], integral equations [30–32], ordinary differential 

equations [33–37] and fractional differential equations [38–41].  

Here, we report a short review about the previous works in the literature about the nonlinear 

ordinary differential equation solution. This method may be applicable on the initial value 

problems straightforwardly, because it works based on the initial conditions. There are some 

initial value problems that have been solved using the classic DTM in [42–44].Usually the 

solution obtained by DTM will diverge for large domain, because we should limit the number of 

Taylor series elements. To overcome such a problem, two techniques may be used: multi-

stepDTM [45–47] and after treatment Pade approximation [48–51]. 

Solution of boundary value problems is a main application of DTM in engineering problems. To 

solve this kind of problems, one of the boundary conditions transforms to an unknown initial 

condition. Then, the solution can be obtained as a function of the unknown parameter. Finally, by 

applying the boundary condition transformed to initial condition, the value of the unknown 

parameter can be computed. This technique first is used in [33] to solve the steady thermal 

transfer equations. Later, some of the nonlinear thermal transfer equations of fins are solved by 

DTM such as [52–55]. 

In this article, we use a combination of differential transform method and iterative Newton’s 

method (INM) for solving the system of high order nonlinear boundary value problems. The 

unknown parameters are determined by the INM as a shooting method.  As we will see in the 

results, the solution converges rapidly with 5 to 7 iterations. We chose two nonlinear problems 
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subject to the fluid mechanics and thermal transfer to illustrate how we can apply the new hybrid 

method on the problems. 

2. Differential transform method 

The differential transform been defined as it follows: 
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Where x(t) indicates an arbitrary function, and X(k) indicates the transformed function. The 

inverse transformation is as follows 
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By substituting Eq(1) in Eq (2) 
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The function x(t) is often considered as a series with limited terms and Eq. (2), may be rewritten 

as: 

The x(t)function is often considered as a series having limited terms and Eq(2) 
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where, m is the number of Taylor series’ components. Generally, the accuracy of the solution can 

be increased by raising this value 

Some of the DTM properties are presented in table1. They are obtained from Eqs. (1) and (2). 

Table 1 
The properties of the DTM. 

Original function Transformed function 

     f t g t h t        F k G k H k   

   f t cg t     F k cG k  

 
 n

n

d g t
f t

dt
   

 
 

!

!

k n
F k G k n

k


   

     f t g t h t       
0

k

r

F k G r H k r


   

  nf t t     
1

0

if k n
F k k n

if k n



   


 



18 S. Mosayebidorcheh et al./ Reliability Engineering and Resilience 1-2 (2019) 15-32 

3. Applications 

3.1. Condensation film on the inclined rotating disk 

3.1.1. Mathematical formulation 

The dimensionless momentum and energy equations of the condensation film on the inclined 

rotating disk may be formulated as the nonlinear system of boundary value problems as follow 

[56]: 

 
2 2 2 0,f f g ff       (5) 

2 2 0,g gf fg      (6) 

2 1 0,p pf sg fp        (7) 

2 0,s gp sf fs       (8) 

2 Pr 0.f     (9) 

Regarding the boundary conditions: 
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 (10) 

Where Pr and   are the Prandtle number and dimensionless thickness, respectively. 

3.1.2. Solution with the new hybrid method 

In this section, Eqs 5 to 9 are solved by applying a new hybrid technique. The solution includes 

two steps. First the Taylor series of solution is determined by using the mathematical relations 

and applying DTM. Finally, the iterative newton’s method is used to obtain the unknown 

parameters. 

3.1.2.1. Applying DTM 

The boundary value problems (Eqs. (5) to (9)) may be transformed to the initial value ones 

replacing the unknown initial conditions in place of the boundary conditions at the end. 

         1 2 3 4 50 , 0 , 0 , 0 , 0 .f a g a p a s a a          (11) 

Applying the DTM on Eqs. (5) to (9) at 0   , the recursive relations are determined to calculate 

the coefficients of the series solutions as follow: 
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The differential transform of the conditions at 0   in Eq. (11) is: 
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Substituting Eq. (17) into the Eqs. (12) to (16) for k=0,1,… , we have: 
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3.1.2.2. Applying the iterative newton's method 

In this part, the unknown parameters are obtained from the boundary conditions and    is 

substituted in Eqs 18 to 22. With respect to this issue the following residual functions are defined 

ro minimize them to be able to obtain the unknown parameters. 
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 (23) 

To obtain the values of a1 to a5 the aforesaid functions must be zero. For obtaining the roots of 

the Eq. (23), we apply the multi-variable iterative method of Newoton as follows: 

1

1 1 11 1
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 (24) 

By surmising the initial values of 
1a to 

5a , we should compute the residual vector (R) and 

Jacobian Matrix ( i

j

R

a




). The residual vector may be obtained through substituting  1 5,...,

n
a a  in 

Eq. (23). The components of the Jacobian matrix in Eq. (24) may be calculated through 

differentiating them analytically with respect to
1a to 

5a and after that, substituting  1 5,...,
n

a a  in 

that equation. 

The efficiency and accuracy of the proposed hybrid method is indicated by illustrating the results 

and numerical solution diagrams in figures 1 and 2. The present results are compared with the 

numerical solution using the Runge-Kutta method in these figures. The proximate solution of the 

problem is shown in Table 2 for Pr=1. The values of the unknown parameters 1 2 3 4, , ,a a a a and 5a

shown in Table 3 for Pr=5 and also different numbers of thickness. These values may be 

substituted in Eqs. (18) to (22) to determine the approximate solution of the problem. 
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Fig. 1. The profiles        , , ,f g p s    and    when 1   and Pr=1. 

 
Fig. 2. The profiles        ' , ' , ' , 'f g p s    and  '  when 1   and Pr=1. 

Table 2 

The proximate solutions        , , ,f g p s    and    when Pr=1. 

 Approximate solution 

   2 3 4 5 6 7 80.2412 0.1667 0.0066 0.0001 0.0013 0.0004 0.0000f                

   3 4 5 6 7 81 0.0787 0.1608 0.0865 0.0052 0.0027 0.0016 0.0004g                 

0.5     3 4 5 6 7 80.0401 0.0823 0.0449 0.0026 0.0000 0.0003 0.0000s                 

   2 3 4 5 6 7 80.4941 0.5 0.0067 0.0002 0.0038 0.0008 0.0001 0.0004p                  

   4 5 6 7 82.0080 0.0807 0.0335 0.0009 0.0037 0.0033              

  

   2 3 4 5 6 7 80.3489 0.1667 0.0311 0.0023 0.0019 0.0008 0.0001f                

   3 4 5 6 7 81 0.3720 0.2355 0.1052 0.0248 0.0086 0.0031 0.0009g                 

1     2 3 4 5 6 7 80.8933 0.5 0.0380 0.0071 0.0028 0.0032 0.0008 0.0008p                  

   3 4 5 6 7 80.2281 0.1489 0.0693 0.0131 0.0012 0.0004 0.0003s                 

   4 5 6 7 81.0445 0.0615 0.0174 0.0022 0.0042 0.0025              
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Table 3 

The values of 1 2 3 4, , ,a a a a and 5a obtained using the iterative Newton's method when Pr=5. 

 
1a  2a  3a  4a  5a  

0.1   0.0999 -0.0006 0.0999 -0.0003 10.0003 

0.2   0.1998 -0.0053 0.1999 -0.0027 5.0026 

0.3   0.2986 -0.0178 0.2995 -0.0089 3.3422 

0.4   0.3940 -0.0416 0.3980 -0.0210 2.5209 

0.5   0.4825 -0.0787 0.4941 -0.0401 2.0399 

0.6   0.5594 -0.1285 0.5862 -0.0667 1.7329 

0.7   0.6208 -0.1879 0.6726 -0.1003 1.5279 

0.8   0.6647 -0.2519 0.7522 -0.1395 1.3885 

0.9   0.6921 -0.3149 0.8249 -0.1823 1.2956 

1   0.7057 -0.3730 0.8910 -0.2272 1.2423 

 

All the initial guesses for 
1a  

to
5a  are considered at first. The convergence history of a special 

case is illustrated in Fig3.as it can be seen, the problem converged quickly with only 5 iterations. 

 
Fig. 3. The history of the iterative method of Newton when 1   and Pr=5. 

3.2 Rotating MHD flow over a porous shrinking sheet 

3.2.1. Mathematical formulation 

The dimensionless momentum equations of the Rotating MHD Flow over a Porous Shrinking 

Sheet may be formulated as the following nonlinear system of boundary value problems [57]: 

 2 22 Re 0,IV

pf M f K g f f ff          (25) 

 2 22 Re 0,pg M g K f f g fg         (26) 

with the boundary conditions: 
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     

     

1 , 1 1, 1 0,

1 0, 1 0, 1 0,

f f g

f f g

       

  
 (27) 

where , ,RepM K  and  are the constants of problem that have been introduced in [57]. 

3.2.2. Solution with the new hybrid method 

In this section, Eqs 25 and 26 are solved using a new hybrid technique. This solution is 

comprised of two stages. Fisrt the Taylor series solution is obtained by the mathematical relations 

and applying DTM. Then, the unknown parameters are determined via the iterative method of 

Newton. 

3.2.2.1. Applying DTM 

The solution to this problem is considered as the Taylor series at 0  in this form as follows: 

   

   

0

0

, 1 1

, 1 1

m
k

k

m
k

k

f F k

g G k

  

  





   

   





 (28) 

The boundary value problems (Eqs. (25) and (26)) may be transformed to the initial value ones 

replacing the unknown initial conditions in place of the boundary conditions. 

       

   

1 2 3 4

5 6

0 , 0 , 0 , 0 ,

0 , 0 .

f a f a f a f a

g a g a

     

 
 (29) 

where 
1a  

to 
6a  are the unknown parameters. By applying the DTM on Eqs. (25) and (26) at 

0   , the recursive relations, as follow, are determined to compute the coefficients of the series 

solutions 

 
    

    

           

       

2

2

0

0

1
4 1 2 2

1 2 3 4

2 1 1 Re 1 2 2 1 1

Re 1 2 3 3 ,

k

p

r

k

r

F k M k k F k
k k k k

K k G k r r F r k r F k r

r r r F r F k r





    
   

          


      







 (30) 

 
  

     

           

2 2

0 0

1
2 2 1 1

1 2

Re 1 1 Re 1 1 .

p

k k

r r

G k M G k K k F k
k k

r F r G k r r G r F k r
 

    
 


        


 

 (31) 

The differential transform of the conditions in Eq. (27) is as follows: 
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       

   

3 4
1 2

5 6

0 , 1 , 2 , 3 ,
2 6

0 , 1 .

a a
F a F a F F

G a G a

   

 

 (32) 

Substituting Eq. (32) into the Eqs. (30) and (31) for Kp=1, M=1and Re=1, we have: 

 

   

3 6 3 2 4 1

2

4 5 2 2 5 6 1 3 1 3 6 3 2 1 4

1 1 1 1
4 ,

24 12 24 24

1 1 1 1 1 1 1
5 2 ,

120 60 30 60 60 120 120

...

F a a a a a a

F a a a a a a a a a a a a a a a

   

           (33) 

 

   

5 2 2 5 1 6

6 3 3 5 1 5 2 2 5 1 6

1 1 1
2 ,

2 2 2

1 1 1 1
3 2 ,

6 3 6 6

...

G a a a a a a

G a a a a a a a a a a a

   

        (34) 

3.2.2.2. Applying the method iterative of newton 

In this part the unknown parameters are determined using the boundary conditions in Eq27. To 

achieve this, by defining the following residual functions, they are minimized to obtain the 

unknown parameters. 

       

       

     

     

       

     

1 1 6

0

1

2 1 6

1

3 1 6

0

4 1 6

1

5 1 6

0

6 1 6

0

1, ,..., 1 1 ,

1, ,..., 1 1 1,

1, ,..., 1 ,

1, ,..., 1 ,

1, ,..., 1 1 ,

1, ,..., 1 .

m
k

k

m
k

k

m

k

m

k

m
k

k

m

k

R f a a f F k

R f a a f kF k

R f a a f F k

R f a a f kF k

R g a a g G k

R g a a g G k
















      

       

  

   

     

  













 (35) 

The above functions must be zero to obtain the values 
1a to 

6a . To get the roots of the Eq. (35), 

the multi-variable iterative Newton method is used as follows: 
1

1 1 11 1

1 6

6 6

1 66 6 61

, 0,1,2,...

nn n n

a a RR R

a a

n

R R

a aa a R





        
       
      
        
      

       
             

 (36) 
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Surmising the initial values for 
1a to 

6a , we must calculate the residual vector (R) and Jacobian 

Matrix ( i

j

R

a




). The residual vector can be determined by substituting  1 6,...,

n
a a  in Eq. (35). 

The Jacobian matrix components in Eq36 can be calculated through differentiating them 

analytically in terms of 
1a to 

6a  and then substituting  1 6,...,
n

a a  in that equation 

Fig. 4 shows the comparing the results of the present new hybrid method with HAM in [57] to 

show the efficiency and accuracy of it. Figs. 5 and 6 demonstrate the graphic representation of 

the results for different values of the parameters. The proximate solution of  f   and  g   

may be seen in Table 4. The values of the unknown parameters 1 2 3 4 5, , , ,a a a a a and 6a are shown 

in Table 5. These values can be substituted in the recursive relations in Eqs. (30) and (31) to be 

able to obtain the proximate solution of this problem. 

  
a b 

Fig. 4. Comparing the results of the proposed hybrid method with HAM [59] when 0.5, 0.5pM K 

and Re=0.2. 

  
a b 

Fig. 5. The profiles    , 'f f   and  g  when 0.5, 0.5pK    and Re=0.5. 
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Fig. 6-a 

 
Fig. 6-b 

 
Fig. 6-c 

Fig. 6. The profiles    , 'f f   and  g   when 0.5, 0.5pK    and M=0.5. 
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Table. 4 

The proximate solutions  f  and  g  for Kp=0.5, M=0.5, Re=1 and different values of  . 

 Approximate solution 

0   

  2 3 4 50.2591 0.2503 0.2658 0.2500 0.0042 0.0014 ...f               

  2 3 4 50.0228 0.0437 0.0512 0.0449 0.0279 0.0013 ...g              

0.2   

  2 3 4 50.1531 0.1007 0.2543 0.2007 0.0006 0.0005 ...f               

  2 3 4 50.0024 0.0424 0.0223 0.0420 0.0242 0.0003 ...g               

0.4   
  2 3 4 50.0496 0.0490 0.2478 0.1517 0.0032 0.0003 ...f               

  2 3 4 50.0315 0.0436 0.0102 0.0419 0.0208 0.0015 ...g               

0.6   
  2 3 4 50.0514 0.1985 0.2462 0.1029 0.0034 0.0011 ...f              

  2 3 4 50.0652 0.0479 0.0467 0.0452 0.0178 0.0025 ...g               

0.8   

  2 3 4 50.1498 0.3476 0.2497 0.0546 0.0012 0.0021 ...f              

  2 3 4 50.1044 0.0560 0.0878 0.0524 0.0158 0.0034 ...g               

1   

  2 3 4 50.2455 0.4963 0.2585 0.0073 0.0034 0.0034 ...f              

  2 3 4 50.1502 0.0689 0.1341 0.0641 0.0149 0.0043 ...g               

 

Table. 5 

The values of 1 2 3 4 5, , , ,a a a a a and 6a obtained through the iterative method of Newton when Kp=0.5, 

M=0.5. 

    10f a    20f a     30f a     40f a     50g a    60g a 
 

 0   -0.24443 0.24657 0.47750 -1.45860 0.02838 0.03921 

Re=0 0.5   0.00557 -0.12625 0.47750 -0.73480 -0.04236 0.03921 

 1   0.25557 -0.49908 0.47750 -0.01099 -0.11311 0.03921 

 0   -0.25911 0.25032 0.53151 -1.49862 0.02283 0.04374 

Re=1 0.5   0.00121 -0.12375 0.49278 -0.76326 -0.04771 0.04531 

 1   0.24547 -0.49628 0.51702 -0.04374 -0.15023 0.06886 

 0   -0.32668 0.25506 0.78702 -1.55914 -0.00320 0.06262 

Re=5 0.5   -0.02698 -0.10829 0.59086 -0.93862 -0.11107 0.11124 

 1   0.14960 -0.45244 0.86163 -0.54167 0.39921 -0.35279 

 

All the initial guesses for 
1a  to 

6a  are considered one. The convergence history of the residual 

and unknown parameters is presented in Fig. 7 for a special case. As it can be seen in Fig7. The 

problem rapidly converged with only 7 iterations since the Jacobian matrix is determined through 

analytically differentiating in terms of a1 to a6. 
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a 

 
b 

Fig. 7. The convergence history of the iterative method of Newton when Kp=0.5, M=0.5, 0.5   and 

Re=6 for a) the residual functions and b) the unknown parameters. 

4. Conclusion 

The governing equations of the majority of the fluid mechanics problems can be expressed as a 

system of nonlinear boundary value problems. The present article introduced a new hybrid 

analytical-numerical procedure for solving this kind of problems The method includes the 

differential transform method and the iterative method of Newton. The Taylor series of the 

solution is computed by transforming the boundary value problems(BVP) and it s boundary 

conditions to a set of algebraic equations. By substituting the Jacobian matrix in the iterative 

method of Newton,the unknown parameters can be computed 
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Finally, the proximate solution of the problem is obtained in the form of a polynomial function. 

The application of the hybrid technique is illustrated by applying on two nonlinear problems in 

fluid mechanics in the literature: condensation film on the inclined rotating disk and rotating 

MHD flow over a porous shrinking sheet. Comparing the present results with the numerical 

solutions and also the results presented in the literature, an excellent accuracy is observed. The 

quick convergence of the solution is one of the other important merits of the method proposed. 
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