Document Type : Regular Article

Authors

1 Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Department of Mechanical Engineering, Babol University of Technology, Babol, Iran

3 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran

Abstract

This article is aimed to introduce a new hybrid analytical-digital technique for solving a wide range of problems in fluid mechanics. This method is according to the Different Transform Method (DTM) and Newton’s Iterative Method (NIM). In the Boundary Value Problems (BVP), the system and the boundary conditions converted to an algebraic equation set, and the Taylor series of the solution are subsequently calculated. By finding Jacobian matrix, the unknown parameters of the solution may be calculated using the multi-variable iterative Newton's method. The techniques are employed to determine a proximate solution for the problem. To expound upon the application of the new hybrid method illustratively, two nonlinear problems in fluid mechanics are considered: condensation film on the inclined rotating disk and the rotating MHD flow on a porous shrinking sheet. Using comparing the present results obtained with the numerical solutions and results presented in the literature, an excellent accuracy is observed. Quick convergence of the solution is another important merit of the proposed method.

Highlights

Google Scholar

Keywords

Main Subjects

[1]     Rashidi MM, Shahmohamadi H, Dinarvand S. Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates. Math Probl Eng 2008;2008:1–13. https://doi.org/10.1155/2008/935095.
[2]     Dinarvand S, Rashidi M, Doosthoseini A. Analytical approximate solutions for two-dimensional viscous flow through expanding or contracting gaps with permeable walls. Open Phys 2009;7. https://doi.org/10.2478/s11534-009-0024-x.
[3]     Rashidi MM, Domairry G, Dinarvand S. Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method. Commun Nonlinear Sci Numer Simul 2009;14:708–17. https://doi.org/10.1016/j.cnsns.2007.09.015.
[4]     Rashidi MM, Ganji DD, Dinarvand S. Approximate Traveling Wave Solutions of Coupled Whitham-Broer-Kaup Shallow Water Equations by Homotopy Analysis Method. Differ Equations Nonlinear Mech 2008;2008:1–8. https://doi.org/10.1155/2008/243459.
[5]     Rashidi MM, Domairry G, Dinarvand S. The homotopy analysis method for explicit analytical solutions of Jaulent-Miodek equations. Numer Methods Partial Differ Equ 2009;25:430–9. https://doi.org/10.1002/num.20358.
[6]     Liao S-J. A general approach to get series solution of non-similarity boundary-layer flows. Commun Nonlinear Sci Numer Simul 2009;14:2144–59. https://doi.org/10.1016/j.cnsns.2008.06.013.
[7]     Ghotbi AR, Bararnia H, Domairry G, Barari A. Investigation of a powerful analytical method into natural convection boundary layer flow. Commun Nonlinear Sci Numer Simul 2009;14:2222–8. https://doi.org/10.1016/j.cnsns.2008.07.020.
[8]     Ziabakhsh Z, Domairry G. Analytic solution of natural convection flow of a non-Newtonian fluid between two vertical flat plates using homotopy analysis method. Commun Nonlinear Sci Numer Simul 2009;14:1868–80. https://doi.org/10.1016/j.cnsns.2008.09.022.
[9]     Abbasbandy S, Hayat T. Solution of the MHD Falkner-Skan flow by homotopy analysis method. Commun Nonlinear Sci Numer Simul 2009;14:3591–8. https://doi.org/10.1016/j.cnsns.2009.01.030.
[10]    Raftari B, Yildirim A. The application of homotopy perturbation method for MHD flows of UCM fluids above porous stretching sheets. Comput Math with Appl 2010;59:3328–37. https://doi.org/10.1016/j.camwa.2010.03.018.
[11]    Esmaeilpour M, Ganji DD. Application of He’s homotopy perturbation method to boundary layer flow and convection heat transfer over a flat plate. Phys Lett A 2007;372:33–8. https://doi.org/10.1016/j.physleta.2007.07.002.
[12]    Rashidi MM, Ganji DD, Dinarvand S. Explicit analytical solutions of the generalized Burger and Burger-Fisher equations by homotopy perturbation method. Numer Methods Partial Differ Equ 2009;25:409–17. https://doi.org/10.1002/num.20350.
[13]    Fathizadeh M, Rashidi F. Boundary layer convective heat transfer with pressure gradient using Homotopy Perturbation Method (HPM) over a flat plate. Chaos, Solitons & Fractals 2009;42:2413–9. https://doi.org/10.1016/j.chaos.2009.03.135.
[14]    Bararnia H, Ghasemi E, Soleimani S, Ghotbi AR, Ganji DD. Solution of the Falkner–Skan wedge flow by HPM–Pade’ method. Adv Eng Softw 2012;43:44–52. https://doi.org/10.1016/j.advengsoft.2011.08.005.
[15]    Mohyud-Din ST, Yildirim A, Anıl Sezer S, Usman M. Modified Variational Iteration Method for Free-Convective Boundary-Layer Equation Using Padé Approximation. Math Probl Eng 2010;2010:1–11. https://doi.org/10.1155/2010/318298.
[16]    Rashidi MM, Shahmohamadi H. Analytical solution of three-dimensional Navier–Stokes equations for the flow near an infinite rotating disk. Commun Nonlinear Sci Numer Simul 2009;14:2999–3006. https://doi.org/10.1016/j.cnsns.2008.10.030.
[17]    Wazwaz A-M. The variational iteration method for solving two forms of Blasius equation on a half-infinite domain. Appl Math Comput 2007;188:485–91. https://doi.org/10.1016/j.amc.2006.10.009.
[18]    Wazwaz A-M. The modified decomposition method and Padé approximants for a boundary layer equation in unbounded domain. Appl Math Comput 2006;177:737–44. https://doi.org/10.1016/j.amc.2005.09.102.
[19]    Biazar J, Amirtaimoori AR. An analytic approximation to the solution of heat equation by Adomian decomposition method and restrictions of the method. Appl Math Comput 2005;171:738–45. https://doi.org/10.1016/j.amc.2005.01.083.
[20]    Kechil SA, Hashim I. Non-perturbative solution of free-convective boundary-layer equation by Adomian decomposition method. Phys Lett A 2007;363:110–4. https://doi.org/10.1016/j.physleta.2006.11.054.
[21]    Khan Marwat DN, Asghar S. Solution of the heat equation with variable properties by two-step Adomian decomposition method. Math Comput Model 2008;48:83–90. https://doi.org/10.1016/j.mcm.2007.09.003.
[22]    Ayaz F. Applications of differential transform method to differential-algebraic equations. Appl Math Comput 2004;152:649–57. https://doi.org/10.1016/S0096-3003(03)00581-2.
[23]    Liu H, Song Y. Differential transform method applied to high index differential–algebraic equations. Appl Math Comput 2007;184:748–53. https://doi.org/10.1016/j.amc.2006.05.173.
[24]    Ayaz F. Solutions of the system of differential equations by differential transform method. Appl Math Comput 2004;147:547–67. https://doi.org/10.1016/S0096-3003(02)00794-4.
[25]    Ravi Kanth ASV, Aruna K. Differential transform method for solving linear and non-linear systems of partial differential equations. Phys Lett A 2008;372:6896–8. https://doi.org/10.1016/j.physleta.2008.10.008.
[26]    Ayaz F. On the two-dimensional differential transform method. Appl Math Comput 2003;143:361–74. https://doi.org/10.1016/S0096-3003(02)00368-5.
[27]    Yang X, Liu Y, Bai S. A numerical solution of second-order linear partial differential equations by differential transform. Appl Math Comput 2006;173:792–802. https://doi.org/10.1016/j.amc.2005.04.015.
[28]    Chang S-H, Chang I-L. A new algorithm for calculating two-dimensional differential transform of nonlinear functions. Appl Math Comput 2009;215:2486–94. https://doi.org/10.1016/j.amc.2009.08.046.
[29]    Jang B. Solving linear and nonlinear initial value problems by the projected differential transform method. Comput Phys Commun 2010;181:848–54. https://doi.org/10.1016/j.cpc.2009.12.020.
[30]    Odibat ZM. Differential transform method for solving Volterra integral equation with separable kernels. Math Comput Model 2008;48:1144–9. https://doi.org/10.1016/j.mcm.2007.12.022.
[31]    Arikoglu A, Ozkol I. Solutions of integral and integro-differential equation systems by using differential transform method. Comput Math with Appl 2008;56:2411–7. https://doi.org/10.1016/j.camwa.2008.05.017.
[32]    Arikoglu A, Ozkol I. Solution of boundary value problems for integro-differential equations by using differential transform method. Appl Math Comput 2005;168:1145–58. https://doi.org/10.1016/j.amc.2004.10.009.
[33]    Chen C-L, Liu Y-C. Differential transformation technique for steady nonlinear heat conduction problems. Appl Math Comput 1998;95:155–64. https://doi.org/10.1016/S0096-3003(97)10096-0.
[34]    Mosayebidorcheh S, Mosayebidorcheh T. Series solution of convective radiative conduction equation of the nonlinear fin with temperature dependent thermal conductivity. Int J Heat Mass Transf 2012;55:6589–94. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.066.
[35]    Mosayebidorcheh S. Solution of the Boundary Layer Equation of the Power-Law Pseudoplastic Fluid Using Differential Transform Method. Math Probl Eng 2013;2013:1–8. https://doi.org/10.1155/2013/685454.
[36]    Mosayebidorcheh S. Taylor series solution of the electrohydrodynamic flow equation. J Mech Eng Technol 2013;1:40–5.
[37]    Joneidi AA, Ganji DD, Babaelahi M. Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int Commun Heat Mass Transf 2009;36:757–62. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.020.
[38]    Nazari D, Shahmorad S. Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J Comput Appl Math 2010;234:883–91. https://doi.org/10.1016/j.cam.2010.01.053.
[39]    Odibat Z, Momani S, Erturk VS. Generalized differential transform method: Application to differential equations of fractional order. Appl Math Comput 2008;197:467–77. https://doi.org/10.1016/j.amc.2007.07.068.
[40]    Erturk VS, Momani S, Odibat Z. Application of generalized differential transform method to multi-order fractional differential equations. Commun Nonlinear Sci Numer Simul 2008;13:1642–54. https://doi.org/10.1016/j.cnsns.2007.02.006.
[41]    Arikoglu A, Ozkol I. Solution of fractional differential equations by using differential transform method. Chaos, Solitons & Fractals 2007;34:1473–81. https://doi.org/10.1016/j.chaos.2006.09.004.
[42]    Yaghoobi H, Torabi M. Analytical solution for settling of non-spherical particles in incompressible Newtonian media. Powder Technol 2012;221:453–63. https://doi.org/10.1016/j.powtec.2012.01.044.
[43]    Abdel-Halim Hassan IH. Differential transformation technique for solving higher-order initial value problems. Appl Math Comput 2004;154:299–311. https://doi.org/10.1016/S0096-3003(03)00708-2.
[44]    Chen S-S, Chen C-K. Application of the differential transformation method to the free vibrations of strongly non-linear oscillators. Nonlinear Anal Real World Appl 2009;10:881–8. https://doi.org/10.1016/j.nonrwa.2005.06.010.
[45]    Lien-Tsai Y, Cha’o-Kuang C. The solution of the blasius equation by the differential transformation method. Math Comput Model 1998;28:101–11. https://doi.org/10.1016/S0895-7177(98)00085-5.
[46]    Yaghoobi H, Torabi M. The application of differential transformation method to nonlinear equations arising in heat transfer. Int Commun Heat Mass Transf 2011;38:815–20. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.025.
[47]    Gökdoğan A, Merdan M, Yildirim A. A multistage differential transformation method for approximate solution of Hantavirus infection model. Commun Nonlinear Sci Numer Simul 2012;17:1–8. https://doi.org/10.1016/j.cnsns.2011.05.023.
[48]    Rashidi MM. The modified differential transform method for solving MHD boundary-layer equations. Comput Phys Commun 2009;180:2210–7. https://doi.org/10.1016/j.cpc.2009.06.029.
[49]    Rashidi MM, Keimanesh M. Using Differential Transform Method and Padé Approximant for Solving MHD Flow in a Laminar Liquid Film from a Horizontal Stretching Surface. Math Probl Eng 2010;2010:1–14. https://doi.org/10.1155/2010/491319.
[50]    Rashidi MM, Erfani E. A new analytical study of MHD stagnation-point flow in porous media with heat transfer. Comput Fluids 2011;40:172–8. https://doi.org/10.1016/j.compfluid.2010.08.021.
[51]    Pal D. Hall current and MHD effects on heat transfer over an unsteady stretching permeable surface with thermal radiation. Comput Math with Appl 2013;66:1161–80. https://doi.org/10.1016/j.camwa.2013.07.010.
[52]    Hatami M, Hasanpour A, Ganji DD. Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Convers Manag 2013;74:9–16. https://doi.org/10.1016/j.enconman.2013.04.034.
[53]    Torabi M, Aziz A, Zhang K. A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities. Energy 2013;51:243–56. https://doi.org/10.1016/j.energy.2012.11.052.
[54]    Moradi A, Hayat T, Alsaedi A. Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Convers Manag 2014;77:70–7. https://doi.org/10.1016/j.enconman.2013.09.016.
[55]    Torabi M, Aziz A. Thermal performance and efficiency of convective–radiative T-shaped fins with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity. Int Commun Heat Mass Transf 2012;39:1018–29. https://doi.org/10.1016/j.icheatmasstransfer.2012.07.007.
[56]    Rashidi MM, Dinarvand S. Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method. Nonlinear Anal Real World Appl 2009;10:2346–56. https://doi.org/10.1016/j.nonrwa.2008.04.018.
[57]    Hayat T, Abbas Z, Javed T, Sajid M. Three-dimensional rotating flow induced by a shrinking sheet for suction. Chaos, Solitons & Fractals 2009;39:1615–26. https://doi.org/10.1016/j.chaos.2007.06.045.